

EERC Technology - Putting Research into Practice

Mercury Control Technology R&D Program Review

Pittsburgh, PA

July 14-15, 2004

Dennis Laudal, Grant Dunham, and Leonard Levin

Acknowledgements

Co-Authors: Grant Dunham and Leonard Levin

EPRI: Leonard Levin

DOE/NETL: Bill Aljoe

Wisconsin Dept. of Administration: John Marx

WE Energies: Dave Michaud

UND Center for Aerospace Sciences: Dave Delene

Frontier Geosciences: Eric Prestbo

TVA: Ray Valente

Twin Otter

Project Goal

To gain an understanding of mercury chemistry as a plume moves downwind from the stack.

Background

- Static Plume Dilution Chamber (Frontier Geosciences)
 - Full-scale testing
 - Pilot-scale testing
- Field Observations at Yorkville, GA
 - Atmospheric Research
 - Southern Company
 - EPA
- Plume Study at Bowen Power Plant
 - TVA
 - Frontier Geosciences
 - EERC

Pleasant Prairie Power Plant

- Fuel type: Powder River Basin subbituminous coal
- Boiler capacity: two 617-MW units (Units 1 and 2)
- NO_x control: low-NO_x burners, SCR on Unit 2
- Particulate control: cold-side ESPs
- SO₂ control: low-sulfur coal

Twin Otter Flight and Sampling Crews

Probe Detail

Major Equipment in Plane

- Tekran automated mercury speciation system (113/1135 and 2537A)
 - Particulate-bound mercury, RGM, Hg⁰
- NO_x analyzer modified for faster response time
- NO_x calibration unit
- Data acquisition (Hg, NO_x, GPS, time)

Diagram of the Tekran Automated Hg Analyzer

Plume-Sampling Procedure (preflight)

- Synchronize computer clocks with GPS time
- Hg analyzer zeroed and spanned
- Primary injections used to span Hg analyzer
- NO_x analyzer zeroed and spanned

Plume-Sampling Procedure (preflight), cont.

1130/1135 manually desorbed

Sample zero gas for one cycle

Sample ambient air for one cycle

Switch to aircraft power

Ground and Aerial View of the Stack at Pleasant Prairie

Plume-Sampling Procedure (in-flight)

 Sample approx. 5 miles upwind of stack for 25 minutes to determine background

 Find plume near plant while analyzing background sample

 Sample continuously at point close to stack for 25 minutes

Plume-Sampling Procedure (in-flight), cont.

- Find plume approx. 5 miles downwind while analyzing first plume sample
- Set NO_x analyzer trigger point
- Sample 5 miles downwind of stack for 25 minutes
- Find plume 10 miles downwind of stack while analyzing second sample

Plume-Sampling Procedure (in-flight), cont.

- Set NO_x analyzer trigger point
- Sample 10 miles downwind for 25 minutes
- Land while analyzing last sample
- Switch to ground power
- Desorb on zero air

Flight Summary

- Sampling flight August 27
- Flooded probe with N₂ to demonstrate integrity of sampling system
- Background concentrations
 - $-Hg^0=2.0 \text{ ng/Nm}^3 \text{ (N= 1 atm and 0°C)}$
 - Hg(p) = 7.5 pg/Nm³
 - -RGM=9.8 pg/Nm³
- Sampled near the stack, 5 and 10 miles downwind

Flight Track on August 27, 2003

Stack Sampling

- A Hg SCEM was located at the stack, measuring mercury continuously during each flight.
- Three Ontario Hydro samples were taken at the stack when the Hg SCEM was set up.
- One additional Ontario Hydro sample was taken each flight day.

Pleasant Prairie Hg Emissions

Date

Calculation of Dilution Ratios

$$DR = \frac{(\text{stack NO}_{x} - \text{background NO}_{x})}{(\text{plume NO}_{x} - \text{background NO}_{x})}$$

Reasons for Outliers

- Low NO_x leads to very high dilution ratio.
 - May be caused by high zero valve trigger point.
 - "Skimming" the plume, which results in low NO_x concentrations.

Total Hg Mass Balance: Plume Hg Compared to Stack Hg

0 Miles			5 Miles			10 Miles		
Total Hg in Plume, µg/Nm³	Total Hg in Stack, µg/Nm³	Bal., %	Total Hg in Plume, µg/Nm³	Total Hg in Stack, µg/Nm³	Bal., %	Total Hg in Plume, µg/Nm³	Total Hg in Stack, µg/Nm³	Bal., %
13.5	9.3	145	15.1	9.3	162	16.5	9.3	177
12.2	8.5	144	14.4	8.5	169	17.8	8.5	209
10.8	7.6	142	30.9	7.6	407	7.9	9.2	86
7.8	9.2	85	9.6	9.2	104			
12.0	9.2	130						
18.6	9.2	202						

Mercury Results

	0 Miles	5 Miles	10 Miles
Plume			
Hg ⁰	10.7	15.7	12.4
RGM	2.0	1.7	1.6
Total Hg	12.8	17.5	14.1
% Hg ⁰	83	89	88
Stack			
Hg ⁰	5.9	5.9	5.9
RGM	2.9	2.9	2.9
Total Hg	8.8	8.8	8.8
% Hg ⁰	67	67	67

Comparison of RGM in the Plume to the RGM in the Stack

Conclusions

- Mercury can be measured in plumes with reasonable accuracy.
- Using a dilution factor based on the plume and stack NO_{x_i} a reasonable mercury mass balance can be obtained when comparing the mercury in the stack to the mercury in the plume.
- There appears to be a reduction in RGM when comparing the RGM in the plume to the RGM in the stack (with a corresponding increase in Hg⁰).
 - 44% reduction of RGM from the stack to first sample point
 - 66% reduction of RGM from stack to 5-mile sample point
 - No additional reduction after 5 miles

Contact Information

Energy & Environmental Research Center

University of North Dakota 15 North 23rd Street PO Box 9018 Grand Forks, North Dakota 58202-9018

World Wide Web: www.undeerc.org

Telephone No. (701) 777-5000

Fax No. (701) 777-5181

Dennis Laudal dlaudal@undeerc.org (701) 777-5138

Grant Dunham gdunham@undeerc.org (701) 777-5034

